Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(5): e36747, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590601

RESUMO

Kinase homology domain (KHD) phosphorylation is required for activation of guanylyl cyclase (GC)-A and -B. Phosphopeptide mapping identified multiple phosphorylation sites in GC-A and GC-B, but these approaches have difficulty identifying sites in poorly detected peptides. Here, a functional screen was conducted to identify novel sites. Conserved serines or threonines in the KHDs of phosphorylated receptor GCs were mutated to alanine and tested for reduced hormone to detergent activity ratios. Mutation of Ser-489 in GC-B to alanine but not glutamate reduced the activity ratio to 60% of wild type (WT) levels. Similar results were observed with Ser-473, the homologous site in GC-A. Receptors containing glutamates for previously identified phosphorylation sites (GC-A-6E and GC-B-6E) were activated to ~20% of WT levels but the additional glutamate substitution for S473 or S489 increased activity to near WT levels. Substrate-velocity assays indicated that GC-B-WT-S489E and GC-B-6E-S489E had lower Km values and that WT-GC-B-S489A, GC-B-6E and GC-B-6E-S489A had higher Km values than WT-GC-B. Homologous desensitization was enhanced when GC-A contained the S473E substitution, and GC-B-6E-S489E was resistant to inhibition by a calcium elevating treatment or protein kinase C activation--processes that dephosphorylate GC-B. Mass spectrometric detection of a synthetic phospho-Ser-473 containing peptide was 200-1300-fold less sensitive than other phosphorylated peptides and neither mass spectrometric nor (32)PO(4) co-migration studies detected phospho-Ser-473 or phospho-Ser-489 in cells. We conclude that Ser-473 and Ser-489 are Km-regulating phosphorylation sites that are difficult to detect using current methods.


Assuntos
Receptores do Fator Natriurético Atrial/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Humanos , Mutação de Sentido Incorreto , Mapeamento de Peptídeos/métodos , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores do Fator Natriurético Atrial/genética
2.
Biochemistry ; 49(47): 10137-45, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20977274

RESUMO

Guanylyl cyclase A and B (GC-A and GC-B) are transmembrane guanylyl cyclase receptors that mediate the physiologic effects of natriuretic peptides. Some sites of phosphorylation are known for rat GC-A and GC-B, but no phosphorylation site information is available for the human homologues. Here, we used mass spectrometry to identify phosphorylation sites in GC-A and GC-B from both species. Tryptic digests of receptors purified from HEK293 cells were separated and analyzed by nLC-MS-MS. Seven sites of phosphorylation were identified in rat GC-A (S497, T500, S502, S506, S510, T513, and S487), and all of these sites except S510 and T513 were observed in human GC-A. Six phosphorylation sites were identified in rat GC-B (S513, T516, S518, S523, S526, and T529), and all six sites were also identified in human GC-B. Five sites are identical between GC-A and GC-B. S487 in GC-A and T529 in GC-B are novel, uncharacterized sites. Substitution of alanine for S487 did not affect initial ligand-dependent GC-A activity, but a glutamate substitution reduced activity 20%. Similar levels of ANP-dependent desensitization were observed for the wild-type, S487A, and S487E forms of GC-A. Substitution of glutamate or alanine for T529 increased or decreased ligand-dependent cyclase activity of GC-B, respectively, and T529E increased cyclase activity in a GC-B mutant containing glutamates for all five previously identified sites as well. In conclusion, we identified and characterized new phosphorylation sites in GC-A and GC-B and provide the first evidence of phosphorylation sites within human guanylyl cyclases.


Assuntos
Receptores do Fator Natriurético Atrial/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Fosforilação , Ratos , Receptores do Fator Natriurético Atrial/química , Espectrometria de Massas em Tandem
3.
Biomarkers ; 15(4): 345-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20374068

RESUMO

Intraindividual variability of measurements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), nicotine, cotinine, and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT) over time is uncertain. From 70 habitual smokers' plasma and urine sampled bimonthly for a year we analysed plasma for NNAL, cotinine and PheT, and urine for NNAL, cotinine and nicotine. We estimated the intraclass correlation coefficients (rho(I)) for each measurement. Plasma and creatinine-corrected urinary NNAL were stable (rho(I) > or =70%); plasma PheT and plasma and urinary total cotinine were fairly stable (rho(I) > or =50%), but urinary nicotine rho(I) approximately 40% was not. Except for nicotine, single measurements from plasma or urine adequately represent individual mean exposure over time.


Assuntos
Biomarcadores/análise , Fumar/sangue , Fumar/urina , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Cotinina/sangue , Cotinina/urina , Humanos , Pessoa de Meia-Idade , Nicotina/urina , Nitrosaminas/sangue , Nitrosaminas/urina , Fenantrenos/sangue , Piridinas/sangue , Piridinas/urina , Tempo
4.
J Biol Chem ; 284(29): 19196-202, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19458086

RESUMO

A heterozygous frameshift mutation causing a 12-amino acid extension to the C terminus of atrial natriuretic peptide (ANP) was recently genetically linked to patients with familial atrial fibrillation (Hodgson-Zingman, D. M., Karst, M. L., Zingman, L. V., Heublein, D. M., Darbar, D., Herron, K. J., Ballew, J. D., de Andrade, M., Burnett, J. C., Jr., and Olson, T. M. (2008) N. Engl. J. Med. 359, 158-165). The frameshift product (fsANP), but not wild-type ANP (wtANP), was elevated in the serum of affected patients, but the molecular basis for the elevated peptide concentrations was not determined. Here, we measured the ability of fsANP to interact with natriuretic peptide receptors and to be proteolytically degraded. fsANP and wtANP bound and activated human NPR-A and NPR-C similarly, whereas fsANP had a slightly increased efficacy for human NPR-B. Proteolytic susceptibility was addressed with novel bioassays that measure the time required for kidney membranes or purified neutral endopeptidase to abolish ANP-dependent activation of NPR-A. The half-life of fsANP was markedly greater than that of wtANP in both assays. Additional membrane proteolysis studies indicated that wtANP and fsANP are preferentially degraded by neutral endopeptidase and serine peptidases, respectively. These data indicate that the familial ANP mutation associated with atrial fibrillation has only minor effects on natriuretic peptide receptor interactions but markedly modifies peptide proteolysis.


Assuntos
Fator Natriurético Atrial/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Receptores do Fator Natriurético Atrial/metabolismo , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial/sangue , Fator Natriurético Atrial/genética , Ligação Competitiva , Linhagem Celular , GMP Cíclico/metabolismo , Saúde da Família , Humanos , Hidrólise , Dados de Sequência Molecular , Proteínas Mutantes/sangue , Neprilisina/metabolismo , Ligação Proteica , Ratos , Receptores do Fator Natriurético Atrial/genética , Serina Endopeptidases/metabolismo
5.
Handb Exp Pharmacol ; (191): 341-66, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19089336

RESUMO

Natriuretic peptides are a family of three structurally related hormone/ paracrine factors. Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are secreted from the cardiac atria and ventricles, respectively. ANP signals in an endocrine and paracrine manner to decrease blood pressure and cardiac hypertrophy. BNP acts locally to reduce ventricular fibrosis. C-type natriuretic peptide (CNP) primarily stimulates long bone growth but likely serves unappreciated functions as well. ANP and BNP activate the transmembrane guanylyl cyclase, natriuretic peptide receptor-A (NPR-A). CNP activates a related cyclase, natriuretic peptide receptor-B (NPR-B). Both receptors catalyze the synthesis of cGMP, which mediates most known effects of natriuretic peptides. A third natriuretic peptide receptor, natriuretic peptide receptor-C (NPR-C), clears natriuretic peptides from the circulation through receptor-mediated internalization and degradation. However, a signaling function for the receptor has been suggested as well. Targeted disruptions of the genes encoding all natriuretic peptides and their receptors have been generated in mice, which display unique physiologies. A few mutations in these proteins have been reported in humans. Synthetic analogs of ANP (anaritide and carperitide) and BNP (nesiritide) have been investigated as potential therapies for the treatment of decompensated heart failure and other diseases. Anaritide and nesiritide are approved for use in acute decompensated heart failure, but recent studies have cast doubt on their safety and effectiveness. New clinical trials are examining the effect of nesiritide and novel peptides, like CD-NP, on these critical parameters. In this review, the history, structure, function, and clinical applications of natriuretic peptides and their receptors are discussed.


Assuntos
Natriuréticos/farmacologia , Peptídeos Natriuréticos/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial/farmacologia , História do Século XX , Humanos , Peptídeo Natriurético Encefálico/farmacologia , Peptídeos Natriuréticos/história , Peptídeos Natriuréticos/farmacologia , Fragmentos de Peptídeos/farmacologia
6.
Peptides ; 29(9): 1575-81, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18554750

RESUMO

C-type natriuretic peptide (CNP) stimulates endochondrial ossification by activating the transmembrane guanylyl cyclase, natriuretic peptide receptor-B (NPR-B). Recently, a spontaneous autosomal recessive mutation that causes severe dwarfism in mice was identified. The mutant, called long bone abnormality (lbab), contains a single point mutation that converts an arginine to a glycine in a conserved coding region of the CNP gene, but how this mutation affects CNP activity has not been reported. Here, we determined that 30-fold to greater than 100-fold more CNP(lbab) was required to activate NPR-B as compared to wild-type CNP in whole cell cGMP elevation and membrane guanylyl cyclase assays. The reduced ability of CNP(lbab) to activate NPR-B was explained, at least in part, by decreased binding since 10-fold more CNP(lbab) than wild-type CNP was required to compete with [125I][Tyr0]CNP for receptor binding. Molecular modeling suggested that the conserved arginine is critical for binding to an equally conserved acidic pocket in NPR-B. These results indicate that reduced binding to and activation of NPR-B causes dwarfism in lbab(-/-) mice.


Assuntos
Nanismo/etiologia , Peptídeo Natriurético Tipo C/fisiologia , Receptores do Fator Natriurético Atrial/fisiologia , Sequência de Aminoácidos , Animais , GMP Cíclico/metabolismo , Nanismo/genética , Camundongos , Camundongos Mutantes , Modelos Moleculares
7.
Toxicology ; 222(1-2): 25-36, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16473451

RESUMO

Sulfamethoxazole (SMX) is an effective drug for the management of opportunistic infections, but its use is limited by hypersensitivity reactions, particularly in HIV-infected patients. The oxidative metabolite SMX-nitroso (SMX-NO), is thought to be a proximate mediator of SMX hypersensitivity, and can be reduced in vitro by ascorbate or glutathione. Leukocytes from patients with SMX hypersensitivity show enhanced cytotoxicity from SMX metabolites in vitro; this finding has been attributed to a possible "detoxification defect" in some individuals. The purpose of this study was to determine whether variability in endogenous ascorbate or glutathione could be associated with individual differences in SMX-NO cytotoxicity. Thirty HIV-positive patients and 23 healthy control subjects were studied. Both antioxidants were significantly correlated with the reduction of SMX-NO to its hydroxylamine, SMX-HA, by mononuclear leukocytes, and both were linearly depleted during reduction. Controlled ascorbate supplementation in three healthy subjects increased leukocyte ascorbate with no change in glutathione, and significantly enhanced SMX-NO reduction. Ascorbate supplementation also decreased SMX-NO cytotoxicity compared to pre-supplementation values. Rapid reduction of SMX-NO to SMX-HA was associated with enhanced direct cytotoxicity from SMX-NO. When forward oxidation of SMX-HA back to SMX-NO was driven by the superoxide dismutase mimetic, Tempol, SMX-NO cytotoxicity was increased, without enhancement of adduct formation. This suggests that SMX-NO cytotoxicity may be mediated, at least in part, by redox cycling between SMX-HA and SMX-NO. Overall, these data indicate that endogenous ascorbate and glutathione are important for the intracellular reduction of SMX-NO, a proposed mediator of SMX hypersensitivity, and that redox cycling of SMX-HA to SMX-NO may contribute to the cytotoxicity of these metabolites in vitro.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Infecções por HIV/metabolismo , Leucócitos Mononucleares/metabolismo , Sulfametoxazol/análogos & derivados , Adulto , Idoso , Antioxidantes/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/análise , Separação Celular , Óxidos N-Cíclicos/farmacologia , Hipersensibilidade a Drogas/etiologia , Feminino , Glutationa/análise , Infecções por HIV/sangue , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Oxirredução , Marcadores de Spin , Sulfametoxazol/análise , Sulfametoxazol/química , Sulfametoxazol/metabolismo , Sulfametoxazol/toxicidade
8.
Toxicology ; 208(1): 63-72, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15664433

RESUMO

Sulfonamide antimicrobials such as sulfamethoxazole (SMX) have been associated in humans with hypersensitivity reactions, to include fever, skin eruptions, hepatotoxicity, and blood dyscrasias. These reactions also occur in dogs, the only non-human species known to develop a similar spectrum of sulfonamide hypersensitivity. Sulfonamide hypersensitivity is not well understood, but has been hypothesized to be due to the generation of the reactive oxidative metabolite, nitroso sulfamethoxazole (SMX-NO). SMX-NO, unlike the parent sulfonamide, is cytotoxic in vitro, haptenizes tissue proteins, and is immunogenic in rodents. The purpose of this pilot study was to determine whether SMX-NO, when administered to dogs, would lead to drug-tissue adducts, anti-drug antibodies, antioxidant depletion, or clinical evidence of drug hypersensitivity. Four dogs were randomized to one of four treatments: SMX-NO 1 mg/kg; SMX-NO 3 mg/kg; SMX-NO 10 mg/kg; or vehicle control. Dosing was by the intraperitoneal route, once daily for four consecutive days per week, for 2 weeks total, followed by a third week of observation. Following this, all dogs were challenged with trimethoprim-sulfamethoxazole, 25 mg/kg for 12 h for 2 weeks. No dog developed clinical or biochemical evidence of drug hypersensitivity. Plasma cysteine and leukocyte reduced glutathione were not depleted during dosing; however, ascorbate was significantly depleted by week 2 following SMX-NO at 10 mg/kg. Anti-SMX antibodies (IgG or IgM by ELISA) were not detected in any dogs at any time points. SMX-hemoglobin adducts were detected in the spleen in SMX-NO dosed dogs; however, these adducts were not accompanied by an immunologic or systemic response. The results of this pilot study indicate that SMX-NO dosing in dogs, using a dosing protocol shown to be immunogenic in other species, produces modest ascorbate depletion and hemoglobin adduct formation, but is insufficient to produce an immunologic response or a clinical syndrome of sulfonamide hypersensitivity in this susceptible species.


Assuntos
Anti-Infecciosos/toxicidade , Hipersensibilidade a Drogas/imunologia , Sulfametoxazol/análogos & derivados , Sulfametoxazol/toxicidade , Animais , Anti-Infecciosos/metabolismo , Formação de Anticorpos/efeitos dos fármacos , Ácido Ascórbico/sangue , Biotransformação , Cisteína/sangue , Cães , Hipersensibilidade a Drogas/etiologia , Feminino , Glutationa/sangue , Técnicas In Vitro , Projetos Piloto , Distribuição Aleatória , Baço/efeitos dos fármacos , Baço/imunologia , Sulfametoxazol/metabolismo
9.
J Acquir Immune Defic Syndr ; 36(5): 1041-50, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15247557

RESUMO

OBJECTIVE: The objective of these studies was to determine the role of ascorbate deficiency in HIV infection in the defective detoxification of sulfamethoxazole-nitroso, the metabolite thought to mediate sulfonamide hypersensitivity reactions. METHODS: Fifty-one HIV-infected patients and 26 healthy volunteers were evaluated. Vitamin supplementation histories were obtained, and blood samples were collected for determination of plasma ascorbate, dehydroascorbate, and cysteine concentrations, erythrocyte glutathione concentrations, and plasma reduction of sulfamethoxazole-nitroso in vitro. RESULTS: Plasma ascorbate concentrations were significantly lower in HIV-positive patients not taking vitamin supplements (29.5 +/- 22.3 microM) than in healthy subjects (54.8 +/- 22.3 microM; P = 0.0005) and patients taking 500-1000 mg of ascorbate daily (82.5 +/- 26.3 microM; P < 0.0001). Plasma ascorbate deficiency was strongly correlated with impaired reduction of sulfamethoxazole-nitroso to its hydroxylamine (r = 0.60, P < 0.0001), and during in vitro reduction, the loss of plasma ascorbate was strongly associated with the amount of nitroso reduced (r = 0.70, P < 0.0001). Ascorbate added ex vivo normalized this reduction pathway. Erythrocyte glutathione concentrations were significantly lower in HIV-positive patients (0.98+/-0.32 mM) than in healthy subjects (1.45+/-0.49 mM; P = 0.001), but this finding was unrelated to ascorbate supplementation. There was trend toward lower plasma cysteine concentrations in patients (8.4+/-3.9 microM) than in controls (10.3+/-4.3 microM), but this trend was similarly unrelated to ascorbate supplementation. Dehydroascorbate concentrations were not significantly higher in HIV-positive patients (7.4+/-10.5%) than in healthy controls (4.0+/-6.2%), even in the subset of patients taking ascorbate (8.4+/-9.4%). CONCLUSIONS: Ascorbate deficiency is common in HIV-positive patients and is associated with impaired detoxification of sulfamethoxazole-nitroso, the suspected proximate toxin in sulfonamide hypersensitivity. Patients taking daily ascorbate supplements (500-1000 mg) achieved high plasma ascorbate concentrations and did not show this detoxification defect. Ascorbate deficiency (or supplementation) was not associated with changes in glutathione or cysteine concentrations. These data suggest that ascorbate deficiency, independent of thiol status, may be an important determinant of impaired drug detoxification in HIV infection.


Assuntos
Deficiência de Ácido Ascórbico/complicações , Deficiência de Ácido Ascórbico/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Sulfametoxazol/análogos & derivados , Adulto , Anti-Infecciosos/metabolismo , Ácido Ascórbico/sangue , Relação CD4-CD8 , Estudos de Casos e Controles , Cisteína/sangue , Ácido Desidroascórbico/sangue , Feminino , Glutationa/sangue , Infecções por HIV/imunologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Oxirredução , Sulfametoxazol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...